Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(5): 053305, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243335

RESUMO

FEbeam is an all-in-one field emission data processing interface with the capability to analyze the field emission cathode performance in an rf injector by extracting the field enhancement factor, local field, and effective emission area from the Fowler-Nordheim equations. It also has the capability of processing beam imaging micrographs using its sister software, FEpic. The current version of FEbeam was designed for the Argonne Cathode Test-stand of the Argonne Wakefield Accelerator facility switch yard. With slight modifications, FEbeam could work for many rf field emission injectors. This software is open-source and can be found at GitHub.

2.
ACS Appl Mater Interfaces ; 9(38): 33229-33237, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28862838

RESUMO

In this paper, we study the effect of the actual, locally resolved, field emission area on electron emission characteristics of uniform planar conductive nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) field emitters. High resolution imaging experiments were carried out in a field emission microscope with a specialty imaging anode screen such that electron emission micrographs were taken concurrently with measurements of I-V characteristics. An automated image processing algorithm was applied to process the extensive imaging data sets and calculate the emission area per image. It was routinely found that field emission from as-grown planar (N)UNCD films was always confined to a counted number of discrete emitting centers across the surface, which varied in size and electron emissivity. It was established that the actual field emission area critically depends on the applied electric field and that the field emission area and overall electron emissivity improve with the sp2-fraction present in the film, irrespective of the original substrate roughness or morphology. Most importantly, when as-measured I-E characteristics were normalized by the electric field-dependent emission area, the resulting j-E curves demonstrated a strong kink and departed from the Fowler-Nordheim law, finally saturating at a value on the order of 100 mA/cm2. This value was nearly identical for all studied films regardless of substrate. It was concluded that the saturation value is specific to the intrinsic fundamental properties of (N)UNCD.

3.
Rev Sci Instrum ; 88(3): 033701, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28372386

RESUMO

A new projection type imaging system is presented. The system can directly image the field emission site distribution on a cathode surface by making use of anode screens in the standard parallel plate configuration. The lateral spatial resolution of the imager is on the order of 1-10 µm. The imaging sensitivity to the field emission current can be better than the current sensitivity of a typical electrometer, i.e., less than 1 nA.

4.
Phys Rev Lett ; 117(8): 084801, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27588860

RESUMO

Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (∼100 µm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ∼100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor ß of selected regions on the cathode has been measured. The postexaminations with scanning electron microscopy and white light interferometry reveal the origins of ∼75% strong emission areas overlap with the spots where rf breakdown has occurred.

5.
Ultramicroscopy ; 161: 130-136, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26683815

RESUMO

A device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second electron pulse sequences (pulse trains) at >1GHz repetition rates, as well as controllably manipulates the resulting pulses. Ultimately, it leads to negligible electron pulse phase-space degradation compared to the incoming dc beam parameters. The temporal pulse length and repetition rate for the EMMP can be continuously tunable over wide ranges. Applying the EMMP to a transmission electron microscope (TEM) with any dc electron source (e.g. thermionic, Schottky, or field-emission source), a GHz stroboscopic high-duty-cycle TEM can be realized. Unlike in many recent developments in time-resolved TEM that rely on a sample pumping laser paired with a laser launching electrons from a photocathode to probe the sample, there is no laser in the presented experimental set-up. This is expected to be a significant relief for electron microscopists who are not familiar with laser systems. The EMMP and the sample are externally driven by a radiofrequency (RF) source synchronized through a delay line. With no laser pumping the sample, the problem of the pump laser induced residual heating/damaging the sample is eliminated. As many RF-driven processes can be cycled indefinitely, sampling rates of 1-50GHz become accessible. Such a GHz stroboscopic TEM would open up a new paradigm for in situ and in operando experiments to study samples externally driven electromagnetically. Complementary to the lower (MHz) repetition rates experiments enabled by laser photocathode TEM, new experiments in the multi-GHz regime will be enabled by the proposed RF design. Because TEM is also a platform for various analytical methods, there are infinite application opportunities in energy and electronics to resolve charge (electronic and ionic) transport, and magnetic, plasmonic and excitonic dynamics in advanced functional materials. In addition, because the beam duty-cycle can be as high as ~10(-1) (or 10%), detection can be accomplished by commercially available detectors. In this article, we report an optimal design of the EMMP. The optimal design was found using an analytical generalized matrix approach in the thin lens approximation along with detailed beam dynamics taking actual realistic dc beam parameters in a TEM operating at 200keV.

6.
Phys Rev Lett ; 115(26): 264802, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26764996

RESUMO

Field emission from a solid metal surface has been continuously studied for a century over macroscopic to atomic scales. It is general knowledge that, other than the surface properties, the emitted current is governed solely by the applied electric field. A pin cathode has been used to study the dependence of field emission on stored energy in an L-band rf gun. The stored energy was changed by adjusting the axial position (distance between the cathode base and the gun back surface) of the cathode while the applied electric field on the cathode tip is kept constant. A very strong correlation of the field-emission current with the stored energy has been observed. While eliminating all possible interfering sources, an enhancement of the current by a factor of 5 was obtained as the stored energy was increased by a factor of 3. It implies that under certain circumstances a localized field emission may be significantly altered by the global parameters in a system.

7.
ACS Appl Mater Interfaces ; 5(20): 10302-9, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24147782

RESUMO

Stabilizing Cu2S in its ideal stoichiometric form, chalcocite, is a long-standing challenge that must be met prior to its practical use in thin-film photovoltaic (PV) devices. Significant copper deficiency, which results in degenerate p-type doping, might be avoided by limiting Cu diffusion into a readily formed surface oxide and other adjacent layers. Here, we examine the extent to which PV-relevant metal-oxide over- and underlayers may stabilize Cu2S thin films with desirable semiconducting properties. After only 15 nm of TiO2 coating, Hall measurements and UV-vis-NIR spectroscopy reveal a significant suppression of free charge-carrier addition that depends strongly on the choice of deposition chemistry. Remarkably, the insertion of a single atomic layer of Al2O3 between Cu2S and TiO2 further stabilizes the active layer for at least 2 weeks, even under ambient conditions. The mechanism of this remarkable enhancement is explored by in situ microbalance and conductivity measurements. Finally, photoluminescence quenching measurements point to the potential utility of these nanolaminate stacks in solar-energy harvesting applications.

8.
J Vis Exp ; (72): e50260, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23486006

RESUMO

In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: i. Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. ii. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. iii. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained.


Assuntos
Interferometria/métodos , Terapia a Laser/métodos , Teste de Materiais/métodos , Software , Propriedades de Superfície
9.
Rapid Commun Mass Spectrom ; 26(19): 2224-30, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22956313

RESUMO

RATIONALE: Although the fundamental physical limits for depth resolution of secondary ion mass spectrometry are well understood in theory, the experimental work to achieve and demonstrate them is still ongoing. We report results of high-resolution TOF SIMS (time-of-flight secondary ion mass spectrometry) depth profiling experiments on a nanolayered structure, a stack of 16 alternating MgO and ZnO ~5.5 nm layers grown on a Si substrate by atomic layer deposition. METHODS: The measurements were performed using a newly developed approach implementing a low-energy direct current normally incident Ar(+) ion beam for ion milling (250 eV and 500 eV energy), in combination with a pulsed 5 keV Ar(+) ion beam at 60° incidence for TOF SIMS analysis. By this optimized arrangement, a noticeably improved version of the dual-beam (DB) approach to TOF SIMS depth profiling is introduced, which can be dubbed gentleDB. RESULTS: The mixing-roughness-information model was applied to detailed analysis of experimental results. It revealed that the gentleDB approach allows ultimate depth resolution by confining the ion beam mixing length to about two monolayers. This corresponds to the escape depth of secondary ions, the fundamental depth resolution limitation in SIMS. Other parameters deduced from the measured depth profiles indicated that a single layer thickness is equal to 6 nm so that the 'flat' layer thickness d is 3 nm and the interfacial roughness σ is 1.5 nm, thus yielding d + 2σ = 6 nm. CONCLUSIONS: We have demonstrated that gentleDB TOF SIMS depth profiling with noble gas ion beams is capable of revealing the structural features of a stack of nanolayers, resolving its original surface and estimating the roughness of interlayer interfaces, information which is difficult to obtain by traditional approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...